SANSKAR'S OG PROBLEMS
Hi, this page is created by ...~ SANSGANKRSNGUPTA This page contains exclusive problems made by me myself. I am the creator of these OG problems. What OG stands for is a secret! Please post your solutions with your name. If you view this page please increment the below number by one:
Problem 1
Let be a 2-digit positive integer satisfying
. Find
.
Solution 1 (Casework)
Case 1:
In this case, we have
.
If , we must have
, but this contradicts the original assumption of , so hence we must have
.
With this in mind, we consider the unit digit of .
Subcase 1.1:
In this case, we have that
.
There is no apparent contradiction here, so we leave this as it is.
Subcase 1.2:
In this case, we have that
.
This contradicts with the fact that , so this is impossible.
Subcase 1.3:
In this case, we have that
.
However, this is impossible for all .
Subcase 1.4:
In this case, we have that
.
Again, this yields , which, again, contradicts
.
Hence, we must have .
Now, with determined by modular arithmetic, we actually plug in the values.
To simplify future calculations, note that
.
For , this does not hold.
For , this does not hold.
For , this does not hold.
For , this does not hold.
For , this does not hold.
Hence, there is no positive integers and
between
and
inclusive such that
.
Case 2:
For this case, we must have
which is impossible if a is a integer and .
Case 3:
In this case, we have
.
If , we must have
which is impossible since and
.
Hence, .
Subcase 3.1:
Testing cases, we can see that there is no such .
Subcase 3.2:
Testing cases, we can see that there is no such .
Subcase 3.3:
Testing cases, we can see that there is no such .
Subcase 3.4:
Testing cases, we can see that there is no such .
We see there is no and
that satisfy the given equation.
~Ddk001
FEEDBACK
NICE TRY, KEEP IT UP BUT THERE EXIST SOME A AND B SO DO TRY AGAIN ~SANSGANKRSNGUPTA
Problem2
For any positive integer ,
>1 can
be a perfect square? If yes, give one such
. If no, then prove it.