2013 Canadian MO Problems/Problem 4
Problem
Let be a positive integer. For any positive integer
and positive real number
, define
where
denotes the smallest integer greater than or equal to
. Prove that
for all positive real numbers
.
Solution
First thing to note on both functions is the following:
,
and
Case 1:
Since in the sum, the
f_j(r) =\min (jr, n)+\min\left(\frac{j}{r}, n\right)
~Tomas Diaz. orders@tomasdiaz.com Template:Olution