1969 IMO Problems/Problem 6
Contents
Problem
Prove that for all real numbers , with , the inequalityis satisfied. Give necessary and sufficient conditions for equality.
Solution
Let and
From AM-GM:
with equality at
[Equation 1]
since and , and using the Rearrangement inequality
then
[Equation 2]
Therefore, we can can use [Equation 2] into [Equation 1] to get:
Then, from the values of and we get:
With equality at and
~Tomas Diaz. orders@tomasdiaz.com
Solution 2
This solution is actually more difficult but I added it here for fun to see the generalized case as follows:
Prove that for all real numbers , for with
and the inequality
is satisfied.
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
See Also
1969 IMO (Problems) • Resources | ||
Preceded by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Last Question |
All IMO Problems and Solutions |