2023 AMC 12B Problems/Problem 25

Revision as of 23:30, 15 November 2023 by Isabelchen (talk | contribs) (Supplement (Calculating sin54 from Scratch))
The following problem is from both the 2023 AMC 10B #25 and 2023 AMC 12B #25, so both problems redirect to this page.

Problem

A regular pentagon with area $\sqrt{5}+1$ is printed on paper and cut out. The five vertices of the pentagon are folded into the center of the pentagon, creating a smaller pentagon. What is the area of the new pentagon?

$\textbf{(A)}~4-\sqrt{5}\qquad\textbf{(B)}~\sqrt{5}-1\qquad\textbf{(C)}~8-3\sqrt{5}\qquad\textbf{(D)}~\frac{\sqrt{5}+1}{2}\qquad\textbf{(E)}~\frac{2+\sqrt{5}}{3}$


Solution 1

Pentagon 2023 12B Q25 dissmo.png

Let the original pentagon be $ABCDE$ centered at $O$. The dashed lines represent the fold lines. WLOG, let's focus on vertex $A$.

Since $A$ is folded onto $O$, $AN = NO$ where $N$ is the intersection of $AO$ and the creaseline between $A$ and $O$. Note that the inner pentagon is regular, and therefore similar to the original pentagon, due to symmetry.

Because of their similarity, the ratio of the inner pentagon's area to that of the outer pentagon can be represented by

$(\frac{ON}{OM})^{2} = (\frac{\frac{OA}{2}}{OA\sin (\angle OAE)})^{2} = \frac{1}{4\sin^{2}54}$


Option 1: Knowledge

Remember that $\sin54 = \frac{1+\sqrt5}{4}$.


Option 2: Angle Identities

$\sin54 = \cos36$

$4\cos^{3}18-3\cos18 = 2\sin18\cos18$

$4(1-\sin^{2}18)-3-2\sin18=0$

$4\sin^{2}18+2\sin18-1=0$

$\sin18 = \frac{-1+\sqrt5}{4}$

$\sin54 = \cos36 = 1-2\sin^{2}18 = \frac{1+\sqrt5}{4}$


$\sin^{2}54 =\frac{3+\sqrt5}{8}$

Let the inner pentagon be $Z$.

$[Z] = \frac{1}{4\sin^{2}54}[ABCDE]$

$= \frac{2(1+\sqrt5)}{3+\sqrt5}$

$= \sqrt5-1$

$\boxed{B}$

-Dissmo

Solution 2

[asy] unitsize(5cm);  // Define the vertices of the pentagons pair A, B, C, D, E; pair F, G, H, I, J;  // Calculate the vertices of the larger pentagon A = dir(90); B = dir(90 - 72); C = dir(90 - 2*72); D = dir(90 - 3*72); E = dir(90 - 4*72);  // Draw the larger pentagon draw(A--B--C--D--E--cycle);  pair O = (A+B+C+D+E)/5; pair AA,OO; real gap = 0.02; AA = A+(0,0); OO = O+(0,0);  draw(AA--OO, blue);  pair OOO, OAO; OOO = O+(gap,0); OAO = (O+A)/2 + (gap,0);  draw(OOO--OAO,green); dot(O); dot((O+A)/2);  label("$r_b$", (O+A)*.7, E,blue); label("$a_s$", (O+A)*.2 +(0+0.18,0.05), E,green); label("$r_s$", O+(-0.175,0.2), E,pink);   real scaleFactor = 1/1.618; // Adjust this value as needed // Rotate the smaller pentagon by 180 degrees F = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 + 180); G = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 72 + 180); H = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 2*72 + 180); I = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 3*72 + 180); J = (1 - scaleFactor) * (0,0) + scaleFactor * dir(90 - 4*72 + 180);  // Draw the smaller pentagon  draw(F--G--H--I--J--cycle,red);  draw(arc(O,(H+I)*.5*.6,H*.6)); label("$36^\circ$",O+(+0.05,0.15),NW); draw(O--H,pink); [/asy]

Let $r_b$ and $r_s$ be the circumradius of the big and small pentagon, respectively. Let $a_s$ be the apothem of the smaller pentagon and $A_s$ and $A_b$ be the areas of the smaller and larger pentagon, respectively.

From the diagram: \begin{align*}     \cos{36^\circ} &= \dfrac{a_s}{r_s} = \dfrac{\phi}{2} = \dfrac{\sqrt{5}+1}{4}\\     a_s &= \dfrac{r_b}{2}\\     A_s &= \left(\dfrac{r_s}{r_b}\right)^2A_b\\     &=\left(\dfrac{a_s}{\cos{36^\circ} r_b}\right)^2 \left(1+\sqrt{5}\right)\\     &=\left(\dfrac{r_b}{\dfrac{\phi}{2} r_b}\right)^2 \left(1+\sqrt{5}\right)\\     &=\left(\dfrac{1}{2 \dfrac{\phi}{2}}\right)^2 \left(1+\sqrt{5}\right)\\     &=\left(\dfrac{2}{\sqrt{5}+1}\right)^2 \left(1+\sqrt{5}\right)\\     &=\dfrac{4}{\sqrt{5}+1} \\     &=\dfrac{4\left(\sqrt{5}-1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)} \\     &=\sqrt{5}-1 \end{align*} \[\boxed{\textbf{(B) }\sqrt{5}-1}\] ~Technodoggo

Solution 3

Interestingly, we find that the pentagon we need is the one that is represented by the intersection of the diagonals. Through similar triangles and the golden ratio, we find that the side length ratio of the two pentagons is $\frac{\sqrt{5}-1}{2}$ Thus, the answer is $\sqrt{5}+1 \cdot (\frac{\sqrt{5}-1}{2})^2 = \sqrt{5}-1$. $\boxed{\text{B}}$ ~andliu766

Supplement (Calculating sin54 from Scratch)

2023AMC12BP25.png

Construct $\triangle ABC$ with $\angle A = 36^{\circ}$, $\angle B = \angle C = 72^{\circ}$ and $\triangle BCD$ with $\angle C = 36^{\circ}$, $\angle B = \angle D = 72^{\circ}$. WLOG, let $AC = 1$, $BC = CD = AD = a$, $BD = 1-a$.

\[\frac{AC}{BC} = \frac{BC}{BD}, \quad \frac{1}{a} = \frac{a}{1-a}, \quad 1-a=a^2, \quad a^2 + a - 1 = 0\]

\[a = \frac{ -1 + \sqrt{1^2  - 4(-1) } }{2} = \frac{ \sqrt{5} -1 }{2}\]

\[\cos 36^{\circ} = \cos \angle A = \frac{AE}{AC} = \frac{ 1-a }{2} + 1 = \frac{ a + 1 }{2} = \frac{ \frac{ \sqrt{5} -1 }{2} + 1 }{2} = \frac{ \sqrt{5} + 1 }{4}\]

\[\sin 54^{circ} = \cos 36^{\circ} = \frac{ \sqrt{5} + 1 }{4}\]

~isabelchen

See also

2023 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 24
Followed by
Last Problem
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png