1991 IMO Problems/Problem 5

Revision as of 11:19, 12 November 2023 by Tomasdiaz (talk | contribs) (Solution)

Problem

Let $\,ABC\,$ be a triangle and $\,P\,$ an interior point of $\,ABC\,$. Show that at least one of the angles $\,\angle PAB,\;\angle PBC,\;\angle PCA\,$ is less than or equal to $30^{\circ }$.

Solution

Let $A_{1}$ , $A_{2}$, and $A_{3}$ be $\measuredangle CAB$, $\measuredangle ABC$, $\measuredangle BCA$, respcetively.

Let $\alpha_{1}$ , $\alpha_{2}$, and $\alpha_{3}$ be $\measuredangle PAB$, $\measuredangle PBC$, $\measuredangle PCA$, respcetively.

Using law of sines on $\Delta PAB$ we get: $\frac{\left| PA \right|}{sin(A_{2}-\alpha_{2})}=\frac{\left| PB \right|}{sin(\alpha_{1})}$, therefore, $\frac{\left| PA \right|}{\left| PB \right|}=\frac{sin(A_{2}-\alpha_{2})}{sin(\alpha_{1})}$

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.