2015 AIME I Problems/Problem 9
Problem
Let be the set of all ordered triple of integers
with
. Each ordered triple in
generates a sequence according to the rule
for all
. Find the number of such sequences for which
for some
.
Solution 1
Let . First note that if any absolute value equals 0, then
.
Also note that if at any position,
, then
.
Then, if any absolute value equals 1, then
.
Therefore, if either
or
is less than or equal to 1, then that ordered triple meets the criteria.
Assume that to be the only way the criteria is met.
To prove, let
, and
. Then,
,
, and
.
However, since the minimum values of
and
are equal, there must be a scenario where the criteria was met that does not meet our earlier scenarios. Calculation shows that to be
,
. Again assume that any other scenario will not meet criteria.
To prove, divide the other scenarios into two cases:
,
, and
; and
,
, and
.
For the first one,
,
,
, and
, by which point we see that this function diverges.
For the second one,
,
,
, and
, by which point we see that this function diverges.
Therefore, the only scenarios where is when any of the following are met:
(280 options)
(280 options, 80 of which coincide with option 1)
,
. (16 options, 2 of which coincide with either option 1 or option 2)
Adding the total number of such ordered triples yields
.
- Note to author:
Because ,
,
, and
doesn't mean the function diverges. What if
,
, and
too?
- Note to the Note to author:
This isn't possible because the difference between is either 0, 1, or some number greater than 1. If (since it must be a multiple of
), then a_5 is either 0, 63, or some number greater than 63.
Solution 2
Note that the only way for a to be produced at
is if either
or
. Since the first one will eventually get to the first three assuming that there is no
for any
, that is not possible because
. Therefore, we need
.
If consecutive numbers out of
are equal, then those cases work(
and
or
and
and
). This is simply
by PIE.
Now, note that if any of the first three numbers have difference of , we have another working case. First, we calculate how many there are given exactly one of
or
have difference
. Given
numbers such that the first
have difference
, exactly
permutations work(assuming the numbers are
and
such that
):
;
;
; and
. If the two consecutive numbers are
and
, then the last number has
possiblities:
. This is symmetric for
and
. If the consecutive numbers are
, there are
possibilities(
minus the numbers themselves and the numbers directly above and below). Note that we are not counting any cases already counted in the first case. Therefore, this case gives you
. Now we consider the case that there both adjacent
s have increments of
.
Therefore this gives
. However, note that we have to add the case where you have
consecutive numbers in arrangement such that only
consecutive numbers have difference
. For example,
is one such triple. There are
triples of consecutive numbers and
ways to arrange each one(e.x:
). This adds on 32 working cases, so this case gives
.
Note that there is an ultraspecial(Yes, I know that's not a word) case where we generate a pair of that have difference one. This can only happen if
and
and
have difference
. This contributes
cases(
and then subtract
because of the cases
and
).
Therefore, our answer is .
Solution by hyxue
Video Solution
~MathProblemSolvingSkills.com
See Also
2015 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.