1999 AIME Problems/Problem 9
In the complex plane, let be the set of complex numbers such that Find the area of
Solution 1
Suppose we pick an arbitrary point on the complex plane, say . According to the definition of , this image must be equidistant to and . Thus the image must lie on the line with slope and which passes through , so its graph is . Substituting and , we get .
By the Pythagorean Theorem, we have , and the answer is .
Solution 2
Plugging in yields . This implies that must fall on the line , given the equidistant rule. By , we get , and plugging in yields . The answer is thus .
Solution 3
We are given that is equidistant from the origin and This translates to Since Because thus So the answer is .
Solution 4
Let and be the points in the complex plane represented by and , respectively. implies . Also, we are given , so is isosceles with base . Notice that the base angle of this isosceles triangle is equal to the argument of the complex number , because forms an angle of with . Drop the altitude/median from to base , and you end up with a right triangle that shows . Since and are positive, lies in the first quadrant and ; hence by right triangle trigonometry . Finally, , and , so the answer is .
Solution 5
Similarly to in Solution 3, we see that . Letting the point , we have . Expanding both sides of this equation (after squaring, of course) and canceling terms, we get . Of course, can't be zero because this property of the function holds for all complex . Therefore, and we proceed as above to get .
~ anellipticcurveoverq
Solution 6
This is a solution that minimizes the use of complex numbers, turning this into an introductory algebra analytic geometry problem.
Consider any complex number . Let denote point on the complex plane. Then on the complex plane. The equation for the line is .
Let the image of point be , after the point undergoes the function. Since each image is equidistant from the preimage and the origin, must be on the perpendicular bisector of .Given , . Then . The midpoint of is . Since the slopes of two respectively nonvertical and nonhorizontal lines have a product of , using the point-slope form, the equation of the perpendicular line to is . Rearranging, we have .
Since we know that , thus we plug in into the line: .
Let's start canceling. . Subtracting, . Thus . Since this is an identity for any , thus . . Since , thus (or simply think of as the point , and being the distance of to the origin). Thus plug in . Since and are relatively prime, the final result is .
~hastapasta
See also
1999 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.