2007 AMC 10A Problems/Problem 17

Revision as of 07:04, 11 February 2023 by Savannahsolver (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Suppose that $m$ and $n$ are positive integers such that $75m = n^{3}$. What is the minimum possible value of $m + n$?

$\text{(A)}\ 15 \qquad \text{(B)}\ 30 \qquad \text{(C)}\ 50 \qquad \text{(D)}\ 60 \qquad \text{(E)}\ 5700$

Solution

$3 \cdot 5^2m$ must be a perfect cube, so each power of a prime in the factorization for $3 \cdot 5^2m$ must be divisible by $3$. Thus the minimum value of $m$ is $3^2 \cdot 5 = 45$, which makes $n = \sqrt[3]{3^3 \cdot 5^3} = 15$. The minimum possible value for the sum of $m$ and $n$ is $\boxed {(D)60}.$

Solution 2

First, we need to prime factorize $75$. $75$ = $5^2 \cdot 3$. We need $75m$ to be in the form $x^3y^3$. Therefore, the smallest $m$ is $5 \cdot 3^2$. $m$ = 45, and since $5^3 \cdot 3^3 = 15^3$, our answer is $45 + 15$ = $\boxed {(D)60}$

~Arcticturn

Video Solution

https://youtu.be/MVuQ8G1rCbQ

~savannahsolver

See also

2007 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png