2023 AIME I Problems/Problem 7
Unofficial problem statement: Find the number of positive integers from 1 to 1000 that have different mods in mod 2,3,4,5, and 6.
Solution
.
We have . This violates the condition that is extra-distinct. Therefore, this case has no solution.
.
We have . This violates the condition that is extra-distinct. Therefore, this case has no solution.
.
We have . This violates the condition that is extra-distinct. Therefore, this case has no solution.
.
The condition implies , .
Because is extra-distinct, for is a permutation of . Thus, .
However, conflicts . Therefore, this case has no solution.
.
The condition implies and .
Because is extra-distinct, for is a permutation of .
Because , we must have . Hence, .
Hence, . Hence, .
We have . Therefore, the number extra-distinct in this case is 16.
.
The condition implies and .
Because is extra-distinct, and are two distinct numbers in . Because and is odd, we have . Hence, or 4.
, , .
We have .
We have . Therefore, the number extra-distinct in this subcase is 17.
, , .
.
We have . Therefore, the number extra-distinct in this subcase is 16.
Putting all cases together, the total number of extra-distinct is .
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Solution 2
can either be or mod .
Case 1:
Then, , which implies . By CRT, , and therefore . Using CRT again, we obtain , which gives values for .
Case 2:
is then . If is , then by CRT, , a contradiction. Thus, , which by CRT implies . can either be , which implies that , cases; or , which implies that , cases.
.
~mathboy100