1981 AHSME Problems/Problem 27

Revision as of 10:11, 1 December 2022 by Mrthinker (talk | contribs) (Created page with "==Problem== In the adjoining figure triangle <math>ABC</math> is inscribed in a circle. Point <math>D</math> lies on <math>\stackrel{\frown}{AC}</math> with <math>\stackrel{\f...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

In the adjoining figure triangle $ABC$ is inscribed in a circle. Point $D$ lies on $\stackrel{\frown}{AC}$ with $\stackrel{\frown}{DC} = 30^\circ$, and point $G$ lies on $\stackrel{\frown}{BA}$ with $\stackrel{\frown}{BG}\, > \, \stackrel{\frown}{GA}$. Side $AB$ and side $AC$ each have length equal to the length of chord $DG$, and $\angle CAB = 30^\circ$. Chord $DG$ intersects sides $AC$ and $AB$ at $E$ and $F$, respectively. The ratio of the area of $\triangle AFE$ to the area of $\triangle ABC$ is

[asy] defaultpen(linewidth(.8pt)); pair C = origin; pair A = 2.5*dir(75); pair B = A + 2.5*dir(-75); path circ =circumcircle(A,B,C); pair D = waypoint(circ,(7/12)); pair G = waypoint(circ,(1/6)); pair E = intersectionpoint(D--G,A--C); pair F = intersectionpoint(A--B,D--G); label("$A$",A,N); label("$B$",B,SE); label("$C$",C,SW); label("$D$",D,SW); label("$G$",G,NE); label("$E$",E,NW); label("$F$",F,W); label("$30^\circ$",A,12S+E,fontsize(6pt)); draw(A--B--C--cycle); draw(circ); draw(Arc(A,0.25,-75,-105)); draw(D--G); [/asy] $\textbf{(A)}\ \dfrac {2 - \sqrt {3}}{3}\qquad \textbf{(B)}\ \dfrac {2\sqrt {3} - 3}{3}\qquad \textbf{(C)}\ 7\sqrt {3}-12\qquad \textbf{(D)}\ 3\sqrt {3}-5\qquad\\ \textbf{(E)}\ \dfrac {9-5\sqrt {3}}{3}$

Solution