2022 AMC 12B Problems/Problem 11

Revision as of 16:31, 17 November 2022 by Longbendy (talk | contribs) (Created page with "==Problem == Let <math> f(n) = \left( \frac{-1+i\sqrt{3}}{2} \right)^n + \left( \frac{-1-i\sqrt{3}}{2} \right)^n </math>, where <math>i = \sqrt{-1}</math>. What is <math>f(20...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $f(n) = \left( \frac{-1+i\sqrt{3}}{2} \right)^n + \left( \frac{-1-i\sqrt{3}}{2} \right)^n$, where $i = \sqrt{-1}$. What is $f(2022)$?

$\textbf{(A)}\ -2 \qquad \textbf{(B)}\ -1 \qquad \textbf{(C)}\ 0 \qquad \textbf{(D)}\ \sqrt{3} \qquad \textbf{(E)}\ 2$

Solution

Converting both summands to exponential form, \[-1 + i\sqrt{3} = 2e^{\frac{2\pi i}{3}}\] \[-1 - i\sqrt{3} = 2e^{-\frac{2\pi i}{3}} = 2e^{\frac{4\pi i}{3}}\]

Notice that both are scaled copies of the third roots of unity. When we replace the summands with their exponential form, we get \[f(n) = \left(e^{\frac{2\pi i}{3}}\right)^n + \left(e^{\frac{4\pi i}{3}}\right)^n\] When we substitute $n = 2022$, we get \[f(2022) = \left(e^{\frac{2\pi i}{3}}\right)^{2022} + \left(e^{\frac{4\pi i}{3}}\right)^{2022}\] We can rewrite $2022$ as $3 \cdot 674$, how does that help? \[f(2022) = \left(e^{\frac{2\pi i}{3}}\right)^{3 \cdot 674} + \left(e^{\frac{4\pi i}{3}}\right)^{3 \cdot 674} =\] \[\left(\left(e^{\frac{2\pi i}{3}}\right)^{3}\right)^{674} + \left(\left(e^{\frac{4\pi i}{3}}\right)^{3}\right)^{674} =\] \[1^{674} + 1^{674} = \boxed{\textbf{(E)} \ 2}\] Since any third root of unity must cube to $1$.

~ $\color{magenta} zoomanTV$