Taylor polynomial

Revision as of 15:29, 9 March 2022 by Orange quail 9 (talk | contribs) (Basic facts; will add details later.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The degree-$n$ Taylor polynomial of a function $f(x)$ about $x = a$ is the unique polynomial of degree $n$ whose value and first $n$ derivatives match the value and first $n$ derivatives of $f(x)$ at $x = a$.

The formula for a degree-$n$ Taylor polynomial of $f(x)$ about $x = a$ is \[\sum_{k=0}^{n} \frac{f^{(k)}(a)(x-a)^k}{k!} = f(a) + f'(a)(x - a) + \frac{f''(a)(x-a)^2}{2} + \dots + \frac{f^{(n)}(a)(x-a)^n}{n!}.\] In the formula above, $f^{(k)}$ denotes the order-$k$ derivative of $f$.

Taylor polynomials are often used to approximate non-polynomial functions that cannot be calculated exactly, such as trigonometric functions, exponential functions, and logarithms.

Derivation of the formula

Special cases

Maclaurin polynomial

Tangent-line approximation

Error bound

Taylor series

The Taylor series of an infinitely differentiable function $f(x)$ is the infinite series \[\sum_{k=0}^{\infty} \frac{f^{(k)}(x-a)}{k!} = f(a) + f'(a)(x - a) + \frac{f''(a)(x-a)^2}{2} + \dots.\] The partial sums of this series are the Taylor polynomials of $f(x)$ of each degree.

Convergence