1988 IMO Problems/Problem 6
Let and
be positive integers such that
divides
. Show that
is the square of an integer.
Solution
Choose integers such that
Now, for fixed
, out of all pairs
choose the one with the lowest value of
. Label
. Thus,
is a quadratic in
. Should there be another root,
, the root would satisfy:
Thus,
isn't a positive integer (if it were, it would contradict the minimality condition). But
, so
is an integer; hence,
. In addition,
so that
. We conclude that
so that
.
This construction works whenever there exists a solution for a fixed
, hence
is always a perfect square.