2001 AMC 8 Problems/Problem 13

Revision as of 23:50, 19 February 2022 by Sootommylee (talk | contribs) (Video Solution 1)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Of the 36 students in Richelle's class, 12 prefer chocolate pie, 8 prefer apple, and 6 prefer blueberry. Half of the remaining students prefer cherry pie and half prefer lemon. For Richelle's pie graph showing this data, how many degrees should she use for cherry pie?

$\text{(A)}\ 10 \qquad \text{(B)}\ 20 \qquad \text{(C)}\ 30 \qquad \text{(D)}\ 50 \qquad \text{(E)}\ 72$

Solution

There are $36$ students in the class: $12$ prefer chocolate pie, $8$ prefer apple pie, and $6$ prefer blueberry pie. Therefore, $36-12-8-6=10$ students prefer cherry pie or lemon pie. Half of these prefer each, so $5$ students prefer cherry pie. This means that $\frac{5}{36}$ of the students prefer cherry pie, so $\frac{5}{36}$ of the full $360^\circ$ should be used for cherry pie. This is $(\frac{5}{36})(360^\circ)=50^\circ, \boxed{\text{D}}$

Video Solution

https://youtu.be/4dhUeOdXvUk Soo, DRMS, NM

See Also

2001 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png