2021 WSMO Accuracy Round Problems/Problem 9

Revision as of 13:52, 29 January 2022 by Bigkahuna227 (talk | contribs) (Created page with "==Problem== Let <math>x=1+\frac{5}{2+\frac{3}{2+\frac{3}{2+\ldots}}}.</math> If <math>\sqrt{x+\sqrt{x+\sqrt{x+\ldots}}}</math> can be written as <math>\frac{a+\sqrt{b}}{c},</m...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $x=1+\frac{5}{2+\frac{3}{2+\frac{3}{2+\ldots}}}.$ If $\sqrt{x+\sqrt{x+\sqrt{x+\ldots}}}$ can be written as $\frac{a+\sqrt{b}}{c},$ where $b$ is not divisible by the square of any prime, find $a+b+c.$

Solution

Let $y = 2 + \frac{3}{2 + \frac{3}{2+...}}$: \[\Rightarrow y = 2 + \frac{3}{y}\] \[\Rightarrow y^2 - 2y - 3 = 0\] \[\Rightarrow y = 3\]

Thus, $x = 1 + \frac{5}{y} = 1 + \frac{5}{3} = \frac{8}{3}$. Now let $z = \sqrt{x+\sqrt{x+\sqrt{x+\ldots}}}$ \[\Rightarrow z = \sqrt{\frac{8}{3}+\sqrt{\frac{8}{3}+\sqrt{\frac{8}{3}+\ldots}}}\] \[\Rightarrow z = \sqrt{\frac{8}{3} + z}\] \[\Rightarrow 3z^2 - 3z - 8 = 0\] \[\Rightarrow z = \frac{3 + \sqrt{105}}{6}\]

Our answer is thus $3 + 105 + 6 = \boxed{114}$.

~BigKahuna227