2021 Fall AMC 12A Problems/Problem 24
Problem
Convex quadrilateral has , and . In some order, the lengths of the four sides form an arithmetic progression, and side is a side of maximum length. The length of another side is . What is the sum of all possible values of ?
Solution
Let be a point on such that is a parallelogram. Suppose that and so
Let be the common difference of the arithmetic progression of the side-lengths. It follows that and are and in some order.
If then is a rhombus with side-length which is valid.
If then we have six cases:
WILL COMPLETE VERY SOON. A MILLION THANKS FOR NOT EDITING THIS PAGE.
~MRENTHUSIASM
See Also
2021 Fall AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.