Talk:2021 USAMO Problems/Problem 1

Revision as of 14:34, 11 September 2021 by Dneary (talk | contribs) (Figured out a nice solution to Q1. Challenging question!)

We are given the acute triangle $ABC, rectangles$AA_1B_2B, BB_1C_2C, CC_1A_2A$such that$\angle AA_1B + \angle BB_1C + \angle CC_1A = \pi$. Let's call$\angle AA_1B = \alpha, \angle BB_1C = \beta, \angle CC_1A = \gamma$.

Construct circumcircles$ (Error compiling LaTeX. Unknown error_msg)X_1, X_2$around the rectangles$AA_1B_2B, BB_1C_2C$respectively.$X_1, X_2$intersect at two points:$B$and a second point we will label$O$. Now$A_1B$is a diameter of$X_1$, and$C_2B$is a diameter of$X_2$, so$\angle A_1OB = \angle C_2OB = \frac{\pi}{2}$, and$\angle A_1OC_2 = \pi$, so$O$is o the diagonal$A_1C_2$.$\angle A_1BB_2 = \angle A_1OB_2 = \alpha$(angles standing on the same arc of the circle$X1$), and similarly,$\angle B_1BC_2 = \angle B_1OC_2 = \beta$. Therefore,$\angle B_2OB_1 = \pi - (\alpha + \beta) = \gamma$.

Construct another circumcircle around the triangle$ (Error compiling LaTeX. Unknown error_msg)AOC$, which intersects$AA_2$in$A'$, and$CC_1$in$C'$. We will prove that$A'=A_2, C'=C_2$. Note that$\angle A2CC_1 = \gamma$(given), and$\angle A'OC' = \angle A'AC' = \gamma$(angles on the same arc). But since$A'$is on$AA_2$, that gives$\angle A_2AC' = \angle A_2CC_1$- meaning$C'$is on the line$AC_1$. But$C'$is also on the line$CC_1$- so$C'=C1$. Similarly,$A'=A_2$.

Finally, since$ (Error compiling LaTeX. Unknown error_msg)\angle A_2AC = \frac{\pi}{2}$,$A_2C$is a diameter of$X_3$, and$\angle A_2OC = \frac{\pi}{2}$. Similarly,$\angle B_1OC = \angle C_1OA = \angle B_2OA = \frac{\pi}{2}$, so O is on$B_2C_1, B_1A_2$, and the three diagonals are concurrent.