1987 AIME Problems/Problem 14
Problem
Compute
![$\frac{(10^4+324)(22^4+324)(34^4+324)(46^4+324)(58^4+324)}{(4^4+324)(16^4+324)(28^4+324)(40^4+324)(52^4+324)}$](http://latex.artofproblemsolving.com/2/0/b/20bb13f4bbe80b7a53adafe04cb97bfd6b195888.png)
.
Solution
The Sophie Germain Identity states that can be factorized as
. Each of the terms is in the form of
. Using Sophie-Germain, we get that
.
![$\displaystyle\frac{[(10(10-6)+18)(10(10+6)+18)][(22(22-6)+18)(22(22+6)+18)]\cdots[(58(58-6)+18)(58(58+6)+18)]}{[(4(4-6)+18)(4(4+6)+18)][(16(16-6)+18)(16(16+6)+18)]\cdots[(52(52-6)+18)(52(52+6)+18)]}$](http://latex.artofproblemsolving.com/9/3/2/93229bbe5bb00a3f3c64f510b624aaf7c0e65a19.png)
![$\displaystyle = \frac{(10(4)+18)(10(16)+18)(22(16)+18)(22(28)+18)\cdots(58(52)+18)(58(64)+18)}{(4(-2)+18)(4(10)+18)(16(10)+18)(16(22)+18)\cdots(52(46)+18)(52(58)+18)}$](http://latex.artofproblemsolving.com/c/f/b/cfbc58b0ae799f8ea44419fb9d666eb344467a00.png)
Almost all of the terms cancel out! We are left with .
See also
1987 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |