2010 AIME I Problems/Problem 3

Revision as of 11:46, 24 August 2021 by Jdong2006 (talk | contribs) (Rewrote Solution 4 because it was incomplete.)

Problem

Suppose that $y = \frac34x$ and $x^y = y^x$. The quantity $x + y$ can be expressed as a rational number $\frac {r}{s}$, where $r$ and $s$ are relatively prime positive integers. Find $r + s$.

Solution 1

Substitute $y = \frac34x$ into $x^y = y^x$ and solve. \[x^{\frac34x} = (\frac34x)^x\] \[x^{\frac34x} = (\frac34)^x \cdot x^x\] \[x^{-\frac14x} = (\frac34)^x\] \[x^{-\frac14} = \frac34\] \[x = \frac{256}{81}\] \[y = \frac34x = \frac{192}{81}\] \[x + y = \frac{448}{81}\] \[448 + 81 = \boxed{529}\]

Solution 2

We solve in general using $c$ instead of $3/4$. Substituting $y = cx$, we have:

\[x^{cx} = (cx)^x \Longrightarrow (x^x)^c = c^x\cdot x^x\]

Dividing by $x^x$, we get $(x^x)^{c - 1} = c^x$.

Taking the $x$th root, $x^{c - 1} = c$, or $x = c^{1/(c - 1)}$.

In the case $c = \frac34$, $x = \Bigg(\frac34\Bigg)^{ - 4} = \Bigg(\frac43\Bigg)^4 = \frac {256}{81}$, $y = \frac {64}{27}$, $x + y = \frac {256 + 192}{81} = \frac {448}{81}$, yielding an answer of $448 + 81 = \boxed{529}$.

Solution 3

Taking the logarithm base $x$ of both sides, we arrive with:

\[y = \log_x y^x \Longrightarrow \frac{y}{x} = \log_{x} y = \log_x \frac{3}{4}x = \frac{3}{4}\]

Where the last two simplifications were made since $y = \frac{3}{4}x$. Then,

\[x^{\frac{3}{4}} = \frac{3}{4}x \Longrightarrow x^{\frac{1}{4}} = \frac{4}{3} \Longrightarrow x = \left(\frac{4}{3}\right)^4\]

Then, $y = \left(\frac{4}{3}\right)^3$, and thus:

\[x+y = \left(\frac{4}{3}\right)^3 \left(\frac{4}{3} + 1 \right) = \frac{448}{81} \Longrightarrow 448 + 81 = \boxed{529}\]

Solution 4 (another version of Solution 3)

Taking the logarithm base $x$ of both sides, we arrive with: \[y = \log_x y^x \Longrightarrow \frac{y}{x} = \log_{x} y = \log_x \left(\frac{3}{4}x\right) = \frac{3}{4}\] Now we proceed by the logarithm rule $\log(ab)=\log a + \log b$. The equation becomes: \[\log_x \frac{3}{4} + \log_x x = \frac{3}{4}\] \[\Longleftrightarrow \log_x \frac{3}{4} + 1 = \frac{3}{4}\] \[\Longleftrightarrow \log_x \frac{3}{4} = -\frac{1}{4}\] \[\Longleftrightarrow x^{-\frac{1}{4}} = \frac{3}{4}\] \[\Longleftrightarrow \frac{1}{x^{\frac{1}{4}}} = \frac{3}{4}\] \[\Longleftrightarrow x^{\frac{1}{4}} = \frac{4}{3}\] \[\Longleftrightarrow \sqrt[4]{x} = \frac{4}{3}\] \[\Longleftrightarrow x = \left(\frac{4}{3}\right)^4=\frac{256}{81}\] Then find $y$ as in solution 3, and we get $\boxed{529}$.

See Also

2010 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png