2021 JMPSC Invitationals Problems/Problem 4

Revision as of 20:08, 11 July 2021 by Geometry285 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

Let $(x_n)_{n\geq 0}$ and $(y_n)_{n\geq 0}$ be sequences of real numbers such that $x_0 = 3$, $y_0 = 1$, and, for all positive integers $n$,

\[x_{n+1}+y_{n+1} = 2x_n + 2y_n,\] \[x_{n+1}-y_{n+1}=3x_n-3y_n.\] Find $x_5$.

Solution

We notice that \[x_5 + y_5 = 2(x_4 + y_4)\] \[= 2(2(x_3 + y_3))\] \[= 2(2(2(x_2 + y_2)))\] \[= 2(2(2(2(x_1 + y_1))))\] \[= 2(2(2(2(2(x_0 + y_0))))).\] Since we are given that $x_0 = 3$ and $y_0 = 1$, we can plug these values in to get that \[x_5 + y_5 = 2(2(2(2(2(3 + 1))))) = 2(2(2(2(2(4))))) = 128 \qquad (1).\]

Similarly, we conclude that \[x_5 - y_5 = 3(3(3(3(3(x_0 - y_0)))))= 3(3(3(3(3(3 - 1))))) = 3(3(3(3(3(2))))) = 486 \qquad (2).\]

Adding $(1)$ and $(2)$ gives us $2 \cdot x_5 = 614.$ Dividing both sides by $2$ yields $x_5 = \boxed{307}.$

~mahaler

Solution 2

Add both equations to get $2(x_{n+1})=5x_n-y_n$, and subtract both equations to get $2(y_{n+1})=5y_n-x_n$, so now we bash: $x_1=7$ and $y_1=1$. $x_2=17$ and $y_2=-1$. $x_3=43$ and $y_3=-11$. $x_4=113$ and $y_4=-49$, $x_5=\frac{614}{2}=\boxed{307}$

~Geometry285

See also

  1. Other 2021 JMPSC Invitationals Problems
  2. 2021 JMPSC Invitationals Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png