2021 JMPSC Sprint Problems/Problem 16

Problem

$ABCD$ is a concave quadrilateral with $AB = 12$, $BC = 16$, $AD = CD = 26$, and $\angle ABC=90^\circ$. Find the area of $ABCD$.

Sprint16.jpg

Solution

Notice that $[ABCD] = [ADC] - [ABC]$ and $AC = \sqrt{12^2 + 16^2} = 20$ by the Pythagorean Thereom. We then have that the area of triangle of $ADC$ is $\frac{20 \cdot \sqrt{26^2 - 10^2}}{2} = 240$, and the area of triangle $ABC$ is $\frac{12 \cdot 16}{2} = 96$, so the area of quadrilateral $ABCD$ is $240 - 96 = 144$.

~Mathdreams


See also

  1. Other 2021 JMPSC Sprint Problems
  2. 2021 JMPSC Sprint Answer Key
  3. All JMPSC Problems and Solutions

The problems on this page are copyrighted by the Junior Mathematicians' Problem Solving Competition. JMPSC.png