2013 AMC 12A Problems/Problem 19
Contents
Problem
In ,
, and
. A circle with center
and radius
intersects
at points
and
. Moreover
and
have integer lengths. What is
?
Solution
Solution 1 (Number theoretic power of a point)
Let circle intersect
at
and
as shown. We apply Power of a Point on point
with respect to circle
We have \begin{align*} CX \cdot CB &= CD \cdot C \\ CX(CX+XB) &= (97-86)(97+86) \\ CX(CX+XB) &= 3 \cdot 11 \cdot 61. \end{align*}
Since lengths cannot be negative, we must have This generates the four solution pairs
However, by the Triangle Inequality on
we see that
This implies that we must have
(Solution by unknown, latex/asy modified majorly by samrocksnature)
Solution 2
Let ,
, and
meet the circle at
and
, with
on
. Then
. Using the Power of a Point, we get that
. We know that
, and that
by the triangle inequality on
. Thus, we get that
Solution 3
Let represent
, and let
represent
. Since the circle goes through
and
,
.
Then by Stewart's Theorem,
(Since cannot be equal to
, dividing both sides of the equation by
is allowed.)
The prime factors of are
,
, and
. Obviously,
. In addition, by the Triangle Inequality,
, so
. Therefore,
must equal
, and
must equal
Video Solution by Richard Rusczyk
https://artofproblemsolving.com/videos/amc/2013amc12a/357
~dolphin7
Video Solution
~sugar_rush
See also
2013 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.