2021 April MIMC 10 Problems/Problem 22

Revision as of 16:51, 22 April 2021 by Cellsecret (talk | contribs) (Created page with "In the diagram, <math>ABCD</math> is a square with area <math>6+4\sqrt{2}</math>. <math>AC</math> is a diagonal of square <math>ABCD</math>. Square <math>IGED</math> has area...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

In the diagram, $ABCD$ is a square with area $6+4\sqrt{2}$. $AC$ is a diagonal of square $ABCD$. Square $IGED$ has area $11-6\sqrt{2}$. Given that point $J$ bisects line segment $HE$, and $AE$ is a line segment. Extend $EG$ to meet diagonal $AC$ and mark the intersection point $H$. In addition, $K$ is drawn so that $JK//EC$. $FH^2$ can be represented as $\frac{a+b\sqrt{c}}{{d}}$ where $a,b,c,d$ are not necessarily distinct integers. Given that $gcd(a,b,d)=1$, and $c$ does not have a perfect square factor. Find $a+b+c+d$.

24.png

$\textbf{(A)} ~5 \qquad\textbf{(B)} ~15 \qquad\textbf{(C)} ~61 \qquad\textbf{(D)} ~349 \qquad\textbf{(E)} ~2009 \qquad$

Solution

To be Released on April 26th.