2007 Cyprus MO/Lyceum/Problem 6

Revision as of 15:31, 6 May 2007 by Azjps (talk | contribs) (Don't have img so I can't solve this problem, but I believe this is the correct solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


$\displaystyle ABCD$ is a square of side length 2 and $FG$ is an arc of the circle with centre the midpoint $K$ of the side $\overline{AB}$ and radius 2. The length of the segments $\displaystyle FD=GC=x$ is

$\mathrm{(A) \ } \frac 14\qquad \mathrm{(B) \ } \frac{\sqrt{2}}2\qquad \mathrm{(C) \ } 2-\sqrt{3}\qquad \mathrm{(D) \ } \sqrt{3} - 1\qquad \mathrm{(E) \ } \sqrt{2} - 1$

Solution

($F,\ G$ are on $\overline{AD},\ \overline{ BC}$, respectively)

Draw radii $\overline{KF},\ \overline{KG}$, both with length $2$. $\displaystyle AK = BK = 1$, so we form $30-60-90$ right triangles. $AF = BG = \sqrt{3}$, and so $DF = CG = 2 - \sqrt{3} \Rightarrow \mathrm{C}$.

See also

2007 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30