2010 AMC 10B Problems/Problem 19

Revision as of 22:51, 8 March 2021 by Hansenhe (talk | contribs) (Solution 2)

Problem

A circle with center $O$ has area $156\pi$. Triangle $ABC$ is equilateral, $\overline{BC}$ is a chord on the circle, $OA = 4\sqrt{3}$, and point $O$ is outside $\triangle ABC$. What is the side length of $\triangle ABC$?

$\textbf{(A)}\ 2\sqrt{3} \qquad \textbf{(B)}\ 6 \qquad \textbf{(C)}\ 4\sqrt{3} \qquad \textbf{(D)}\ 12 \qquad \textbf{(E)}\ 18$

Solution 1

The formula for the area of a circle is $\pi r^2$ so the radius of this circle is $\sqrt{156}.$

Because $OA=4\sqrt{3} < \sqrt{156}, A$ must be in the interior of circle $O.$

[asy] unitsize(3mm); defaultpen(linewidth(.8pt)+fontsize(11pt)); dotfactor=3;  real r=sqrt(156); pair A=(0,sqrt(48)), B=(-3,sqrt(147)), C=(3,sqrt(147)); pair O=(0,0); pair X=(0,7sqrt(3)); path outer=Circle(O,r); draw(outer); draw(A--B--C--cycle); draw(O--X); draw(O--B);  pair[] ps={A,B,C,O,X}; dot(ps);  label("$A$",A,SE); label("$B$",B,NW); label("$C$",C,NE); label("$O$",O,S); label("$X$",X,N); label("$s$",A--C,SE); label("$\frac{s}{2}$",B--X,N); label("$\frac{s\sqrt{3}}{2}$",A--X,NE); label("$\sqrt{156}$",O--B,SW); label("$4\sqrt{3}$",A--O,E); [/asy]

Let $s$ be the unknown value, the sidelength of the triangle, and let $X$ be the point on $BC$ where $OX \perp BC.$ Since $\triangle ABC$ is equilateral, $BX=\frac{s}{2}$ and $AX=\frac{s\sqrt{3}}{2}.$ We are given $AO=4\sqrt{3}.$ Use the Pythagorean Theorem and solve for $s.$

\begin{align*} (\sqrt{156})^2 &= \left(\frac{s}{2}\right)^2 + \left( \frac{s\sqrt{3}}{2} + 4\sqrt{3} \right)^2\\ 156 &= \frac14s^2 + \frac34s^2 + 12s + 48\\ 0 &= s^2 + 12s - 108\\ 0 &= (s-6)(s+18)\\ s &= \boxed{\textbf{(B)}\ 6} \end{align*}

Solution 2

We can use the same diagram as Solution 1 and label the side length of $\triangle ABC$ as $s$. Using congruent triangles, namely the two triangles $\triangle BOA$ and $\triangle COA$, we get that $\angle BAO = \angle CAO \implies \angle BAO = \frac{360-60}{2} = 150$. From this, we can use the Law of Cosines, to get \[s^2 + (4 \sqrt{3})^2 - 2 \times s \times 4 \sqrt{3} \times - \frac{\sqrt{3}}{2} = (2 \sqrt{39})^2\] Simplifying, we get \[s^2 + 12s + 48 = 156 \implies s^2 + 12s - 108 = 0\] We can factor this to get \[(x-6)(x+18)\] Obviously, we want the positive solution to get $\boxed{\textbf{(B)}\ 6}$ ~hansenhe

Video Solution

https://youtu.be/FQO-0E2zUVI?t=906

~IceMatrix

See Also

2010 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png