1991 AIME Problems/Problem 3

Revision as of 20:47, 20 April 2007 by Gabiloncho (talk | contribs) (Solution)

Problem

Expanding $(1+0.2)^{1000}_{}$ by the binomial theorem and doing no further manipulation gives

${1000 \choose 0}(0.2)^0+{1000 \choose 1}(0.2)^1+{1000 \choose 2}(0.2)^2+\cdots+{1000 \choose 1000}(0.2)^{1000}$ $= A_0 + A_1 + A_2 + \cdots + A_{1000},$ where $A_k = {1000 \choose k}(0.2)^k$ for $k = 0,1,2,\ldots,1000$. For which $k_{}^{}$ is $A_k^{}$ the largest?

Solution

Let $0<x_{}^{}<1$. Then we may write $A_{k}^{}={N\choose k}x^{k}=\frac{N!}{k!(N-k)!}x^{k}=\frac{(N-k+1)!}{k!}x^{k}$. Taking logarithms in both sides of this last equation and using the well-known fact $\log(a_{}^{}b)=\log a + \log b$ (valid if $a_{}^{},b_{}^{}>0$), we have

$\log(A_{k})=\log\left[\frac{(N-k+1)!}{k!}x^{k}\right]=\sum_{j=1}^{k}\log\left[\frac{(N-j+1)x}{j}\right]\, .$

Now, $\log(A_{k}^{})$ keeps increasing with $k_{}^{}$ as long as the arguments $\frac{(N-j+1)x}{j}>1$ in each of the $\log\big[\;\big]$ terms (recall that $\log y_{}^{} <0$ if $0<y_{}^{}<1$). Therefore, the integer $k_{}^{}$ that we are looking for must satisfy $k=\Big\lceil\frac{(N+1)x}{1+x}\Big\rceil$, where $\lceil z_{}^{}\rceil$ denotes the greatest integer smaller than or equal to $z_{}^{}$.

In summary, substituting $N_{}^{}=1000$ and $x_{}^{}=0.2$ we finally find that $k_{}^{}=166$.

See also

1991 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions