1956 AHSME Problems/Problem 27

Revision as of 21:18, 12 February 2021 by Coolmath34 (talk | contribs)

Problem 27

If an angle of a triangle remains unchanged but each of its two including sides is doubled, then the area is multiplied by:

$\textbf{(A)}\ 2 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 4 \qquad\textbf{(D)}\ 6 \qquad\textbf{(E)}\ \text{more than }6$

Solution

Let the angle be $\theta$ and the sides around it be $a$ and $b$. The area of the triangle can be written as \[A =\frac{a \cdot b \cdot \sin(\theta)}{2}\] The doubled sides have length $2a$ and $2b$, while the angle is still $\theta$. Thus, the area is \[\frac{2a \cdot 2b \cdot \sin(\theta)}{2}\] \[\Rrightarrow  \frac{4ab \sin \theta}{2} = 4A\] \[\boxed {C}\]

~JustinLee2017

Solution

Plugging into the quadratic formula, we get \[x = \frac{2\sqrt{2} \pm \sqrt{8-4ac}}{2a}.\] The discriminant is equal to 0, so this simplifies to $x = \frac{2\sqrt{2}}{2a}=\frac{\sqrt{2}}{a}.$ Because we are given that $a$ is real, $x$ is always rational and the answer is $\boxed{\textbf{(B)}}.$

See Also

1956 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 26
Followed by
Problem 28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png