2021 AMC 10A Problems/Problem 24
Problem 24
The interior of a quadrilateral is bounded by the graphs of and , where a positive real number. What is the area of this region in terms of , valid for all ?
Solution
The conditions and give and or and . The slopes here are perpendicular, so the quadrilateral is a rectangle. Plug in and graph it. We quickly see that the area is , so the answer can't be or by testing the values they give (test it!). Now plug in . We see using a ruler that the sides of the rectangle are about and . So the area is about . Testing we get which is clearly less than , so it is out. Testing we get which is near our answer, so we leave it. Testing we get , way less than , so it is out. So, the only plausible answer is ~firebolt360
Video Solution by OmegaLearn (System of Equations and Shoelace Formula)
~ pi_is_3.14