2021 AMC 12B Problems/Problem 16

Revision as of 19:43, 11 February 2021 by Programjames1 (talk | contribs) (Created page with "==Problem 16== Let <math>g(x)</math> be a polynomial with leading coefficient <math>1,</math> whose three roots are the reciprocals of the three roots of <math>f(x)=x^3+ax^2+b...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 16

Let $g(x)$ be a polynomial with leading coefficient $1,$ whose three roots are the reciprocals of the three roots of $f(x)=x^3+ax^2+bx+c,$ where $1<a<b<c.$ What is $g(1)$ in terms of $a,b,$ and $c?$

$\textbf{(A) }\frac{1+a+b+c}c \qquad \textbf{(B) }1+a+b+c \qquad \textbf{(C) }\frac{1+a+b+c}{c^2}\qquad \textbf{(D) }\frac{a+b+c}{c^2} \qquad \textbf{(E) }\frac{1+a+b+c}{a+b+c}$

Solution

Note that $f(1/x)$ is very close to $g(x)$, it just needs to be multiplied by something so that the leading term is $x^3$. We have \[f(1/x) = \frac{1}{x^3} + \frac{a}{x^2}+\frac{b}{x} + c\] so we can see that \[g(x) = \frac{x^3}{c}f(1/x)\] Therefore \[g(1) = \frac{1}{c}f(1) = \boxed{\textbf{(A) }\frac{1+a+b+c}c}\]