2021 AMC 12A Problems/Problem 19

Revision as of 16:10, 11 February 2021 by Thshea (talk | contribs) (Solution: Made small changes with rewriting as a sum and rewording)

Problem

How many solutions does the equation $\sin \left( \frac{\pi}2 \cos x\right)=\cos \left( \frac{\pi}2 \sin x\right)$ have in the closed interval $[0,\pi]$?

$\textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3\qquad \textbf{(E) }4$

Solution

$\sin \left( \frac{\pi}2 \cos x\right)=\cos \left( \frac{\pi}2 \sin x\right)$

The interval is $[0,\pi]$, which is included in the range of both $\arccos$ and $\arcsin$, so we can use them with no issues.

$\frac{\pi}2 \cos x=\arcsin \left( \cos \left( \frac{\pi}2 \sin x\right)\right)$

$\frac{\pi}2 \cos x=\frac{\pi}2 - \frac{\pi}2 \sin x$

$\cos x = 1 - \sin x$

$\cos x + \sin x = 1$

This only happens at $x = 0, \frac{\pi}2$ on the interval $[0,\pi]$, because one of $\sin$ and $\cos$ must be $1$ and the other $0$.

~Tucker

See also

2021 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png