1979 IMO Problems/Problem 5

Revision as of 22:04, 29 January 2021 by Hamstpan38825 (talk | contribs)

Problem

Determine all real numbers a for which there exists positive reals $x_{1}, \ldots, x_{5}$ which satisfy the relations $\sum_{k=1}^{5} kx_{k}=a,$ $\sum_{k=1}^{5} k^{3}x_{k}=a^{2},$ $\sum_{k=1}^{5} k^{5}x_{k}=a^{3}.$

Solution

Discussion thread can be found here: [1]

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1979 IMO (Problems) • Resources
Preceded by
Problem 4
1 2 3 4 5 6 Followed by
Problem 6
All IMO Problems and Solutions