1964 IMO Problems/Problem 5
Problem
Suppose five points in a plane are situated so that no two of the straight lines joining them are parallel, perpendicular, or coincident. From each point perpendiculars are drawn to all the lines joining the other four points. Determine the maximum number of intersections that these perpendiculars can have.
Solution
Suppose, those five points are . Now, we want to create some special structure. Let, we take the line
and draw a perpendicular from
on
, andd call it
. We can do this set up in
ways. There will
such
s.
Now, we will find how many other perpendiculars intersect the line. We can do this in total ways. Why? See, can draw perpendiculars from
and
to other lines( we haven't counted the perpendicular from
to
and perpendicular from
on
, as they intersect
at the same point) in
ways for each. So, total
ways.
Now, perpendiculars from each
and
on the other lines except on
( because in this case teh perpendiculars from
and
will be parallel to
, and so shall not intersect). So,total
cases.
From, these two cases we get
will be intersected at at most
points.
But, as we have passed this algorithm over all the five points, we have counted each intersection points twice. So, there are total ways.
Now, as we had excluded the orthocentres, we have to add now. There are total orthocentres. Also we should add those vertices as these are also point of intersection of silimar perpendiculars, there are
such.
So, total ways .
See Also
1964 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |