2021 CIME I Problems/Problem 14

Revision as of 20:54, 25 January 2021 by Sugar rush (talk | contribs) (Created page with "Let <math>ABC</math> be an acute triangle with orthocenter <math>H</math> and circumcenter <math>O</math>. The tangent to the circumcircle of <math>\triangle ABC</math> at <ma...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Let $ABC$ be an acute triangle with orthocenter $H$ and circumcenter $O$. The tangent to the circumcircle of $\triangle ABC$ at $A$ intersects lines $BH$ and $CH$ at $X$ and $Y$, and $BY\parallel CX$. Let line $AO$ intersect $\overline{BC}$ at $D$. Suppose that $AO=25, BC=49$, and $AD=a-b\sqrt{c}$ for positive integers $a, b, c,$ where $c$ is not divisible by the square of any prime. Find $a+b+c$.

Solution by TheUltimate123

Let \(H\) be the orthocenter of \(\triangle ABC\), and let \(E\), \(F\) be the feet of the altitudes from \(B\), \(C\). Also let \(A'\) be the antipode of \(A\) on the circumcircle and let \(S=\overline{AH}\cap\overline{EF}\). [asy] size(6cm); defaultpen(fontsize(10pt)); pen pri=blue; pen sec=lightblue; pen tri=heavycyan; pen qua=paleblue; pen fil=invisible; pen sfil=invisible; pen tfil=invisible;  pair O,A,B,C,H,X,Y,EE,F,Ap,SS,D; O=(0,0); A=dir(147.55); B=dir(195); C=dir(345); H=A+B+C; X=extension(B,H,A,A+rotate(90)*A); Y=extension(C,H,A,X); EE=foot(B,C,A); F=foot(C,A,B); Ap=-A; SS=extension(A,H,EE,F); D=extension(A,O,B,C);  draw(A--Ap,qua+Dotted); draw(B--Ap--C,qua); draw(B--X,tri); draw(C--Y,tri); draw(EE--F,sec+Dotted); draw(X--Y,sec); draw(B--Y,sec); draw(C--X,sec); filldraw(circumcircle(B,C,X),sfil,sec); filldraw(A--B--C--cycle,fil,pri); filldraw(circle(O,1),fil,pri);  dot("\(A\)",A,A); dot("\(B\)",B,dir(210)); dot("\(C\)",C,dir(-30)); dot("\(H\)",H,dir(300)); dot("\(X\)",X,N); dot("\(Y\)",Y,W); dot("\(E\)",EE,dir(30)); dot("\(F\)",F,dir(120)); dot("\(S\)",SS,N); dot("\(A'\)",Ap,Ap); dot("\(D\)",D,S);[/asy] Disregarding the condition \(\overline{BY}\parallel\overline{CX}\), we contend:

$\textbf{Claim}:$ In general, \(BCXY\) is cyclic.

Proof. Recall that \(\overline{AA}\parallel\overline{EF}\), so the claim follows from Reim's theorem on \(BCEF\), \(BCXY\). \(\blacksquare\)

With \(\overline{BY}\parallel\overline{CX}\), it follows that \(BCXY\) is an isosceles trapezoid. In particular, \(HB=HY\) and \(HC=HX\). Since \(\overline{SF}\parallel\overline{AY}\), we have\[\frac{HS}{HA}=\frac{HF}{HY}=\frac{HF}{HB}=\cos A.\]But note that \(\triangle AEF\cup H\sim\triangle ABC\cup A'\), so\[\frac{AD}{2R}=1-\frac{A'D}{2R}=1-\frac{HS}{HA}=1-\cos A,\]i.e.\ \(AD=2R(1-\cos A)\). We are given \(R=25\), and by the law of sines, \(\sin A=\frac{49}{50}\), so \(\cos A=\frac{3\sqrt{11}}{50}\), and \(AD=50-3\sqrt{11}\), so $50+3+11=\boxed{064}$.

See also

2021 CIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All CIME Problems and Solutions

The problems on this page are copyrighted by the MAC's Christmas Mathematics Competitions. AMC logo.png