2011 AMC 10A Problems/Problem 3

Revision as of 14:47, 16 January 2021 by Hashtagmath (talk | contribs)

Problem

Suppose [$a$ $b$] denotes the average of $a$ and $b$, and {$a$ $b$ $c$} denotes the average of $a$, $b$, and $c$. What is $\{\{\text{1 1 0}\} \text{ [0 1] } 0\}$?

$\textbf{(A)}\ \frac{2}{9} \qquad\textbf{(B)}\ \frac{5}{18} \qquad\textbf{(C)}\ \frac{1}{3} \qquad\textbf{(D)}\ \frac{7}{18} \qquad\textbf{(E)}\ \frac{2}{3}$

Solution

Average $1$, $1$, and $0$ to get $\frac23$. Average $0$, and $1$, to get $\frac12$. Average $\frac23$, $\frac12$, and $0$. to get $\boxed{\textbf{(D)}\ \frac7{18}}$

Video Solution

https://youtu.be/JKO9YzQULvM

~savannahsolver

See Also

2011 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png