1976 AHSME Problems/Problem 1

Revision as of 16:34, 29 November 2020 by Einsteinstudent (talk | contribs) (Solution)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 1

If one minus the reciprocal of $(1-x)$ equals the reciprocal of $(1-x)$, then $x$ equals

$\textbf{(A) }-2\qquad \textbf{(B) }-1\qquad \textbf{(C) }1/2\qquad \textbf{(D) }2\qquad  \textbf{(E) }3$

Solution

The reciprocal of $(1-x)$ is $\frac{1}{1-x}$, so our equation is \[1-\frac{1}{1-x}=\frac{1}{1-x},\] which is equivalent to $\frac{1}{1-x}=\frac{1}{2}$. So, $1-x=2$ and $x=-1\Rightarrow \textbf{(B)}$.~MathJams


1976 AHSME (ProblemsAnswer KeyResources)
Preceded by
1975 AHSME
Followed by
1977 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions