2018 AMC 8 Problems/Problem 20
Contents
Problem 20
In a point
is on
with
and
Point
is on
so that
and point
is on
so that
What is the ratio of the area of
to the area of
Solution 1
By similar triangles, we have . Similarly, we see that
Using this information, we get
Then, since
, it follows that the
. Thus, the answer would be
.
Sidenote: denotes the area of triangle
. Similarly,
denotes the area of figure
.
Solution 2
Let and
the height of
. We can extend
To form a parallelogram, which would equal
. The smaller parallelogram is
times
. The smaller parallelogram is
of the larger parallelogram, so the answer would be
, since the triangle is
of the parallelogram, so the answer is
.
By babyzombievillager with credits to many others who helped with the solution :D
Solution 3
. We can substitute
as
and
as
, where
is
. Side
having, distance
, has
parts also. And
and
are
and
respectfully. You can consider the height of
and
as
and
respectfully. The area of
is
because the area formula for a triangle is
or
. The area of
will be
. So the area of
will be
. The area of parallelogram
will be
. Parallelogram
to
. The answer is
Solution 4 (Non-math solution)
If you have little time to calculate, divide DEFC into triangles that are equal to dae. Also cut triangle EFB into triangles similar to DAE. We see that there are 9 total triangles, and 4 of those are occupied by DEFC. Thus, 4/9. (although it could be wrong)
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.