1957 AHSME Problems/Problem 7
Problem 7
The area of a circle inscribed in an equilateral triangle is . The perimeter of this triangle is:
Solution
We can see that the radius of the circle is . We know that the radius is of each median line of the triangle; each median line is therefore . Since the median line completes a -- triangle, we can conclude that one of the sides of the triangle is . Triple the side length and we get our answer, .
See Also
1957 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.