2020 CIME I Problems/Problem 5

Revision as of 11:22, 31 August 2020 by Jbala (talk | contribs)

Problem 5

Let $ABCD$ be a rectangle with sides $AB>BC$ and let $E$ be the reflection of $A$ over $\overline{BD}$. If $EC=AD$ and the area of $ECBD$ is $144$, find the area of $ABCD$.

Solution


An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.


Let $O$ be the center of rectangle $ABCD$. Because $E$ is the reflection of $A$ over $\overline{BD}$ and $\angle BAD = 90$ degrees, we have $\angle BED = 90$ degrees. This means $E$ lies on the circle with diameter $\overline{BD}$, or the circumcircle of rectangle $ABCD$. We are given $EC=BC$, so by symmetry, $EC=ED$. Since the three lengths are equal and $\overarc{AB}=180$ degrees, we must have $\overarc{BC}=\overarc{CE}=$\overarc{ED}=60$degrees, so$\triangle OBC$,$\triangle OCE$,$\triangle OED$are all equilateral. Given that the area of cyclic quadrilateral$ECBD$is$144$, the area of$\triangle OBC$is$\frac{1}{3} \cdot 144 = 48$. This is$\frac{1}{4}$of the area of rectangle$ABCD$, so the answer is$48 \cdot 4 = \boxed{192}$.

2020 CIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All CIME Problems and Solutions

The problems on this page are copyrighted by the MAC's Christmas Mathematics Competitions. AMC logo.png