1987 AIME Problems/Problem 7
Problem
Let denote the least common multiple of positive integers
and
. Find the number of ordered triples
of positive integers for which
,
, and
.
Solution
It's clear that we must have ,
and
for some nonnegative integers
. Dealing first with the powers of 2: from the given conditions,
,
. Thus we must have
and at least one of
equal to 3. This gives 7 possible triples
:
and
.
Now, for the powers of 5: we have . Thus, at least two of
must be equal to 3, and the other can take any value between 0 and 3. This gives us a total of 12 possible triples.
Since the exponents of 2 and 5 must satisfy these conditions independently, we have a total of possible valid triples.
See also
1987 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |