2020 USOMO Problems

Revision as of 00:55, 23 June 2020 by Brendanb4321 (talk | contribs)

Day 1

Problem 1

Let $ABC$ be a fixed acute triangle inscribed in a circle $\omega$ with center $O$. A variable point $X$ is chosen on minor arc $AB$ of $\omega$, and segments $CX$ and $AB$ meet at $D$. Denote by $O_1$ and $O_2$ the circumcenters of triangles $ADX$ and $BDX$, respectively. Determine all points $X$ for which the area of triangle $OO_1O_2$ is minimized.

Solution

Problem 2

An empty $2020 \times 2020 \times 2020$ cube is given, and a $2020 \times 2020$ grid of square unit cells is drawn on each of its six faces. A beam is a $1 \times 1 \times 2020$ rectangular prism. Several beams are placed inside the cube subject to the following conditions:

$\bullet$ The two $1 \times 1$ faces of each beam coincide with unit cells lying on opposite faces of the cube. (Hence, there are $3 \cdot 2020^2$ possible positions for a beam.) $\bullet$ No two beams have intersecting interiors. $\bullet$ The interiors of each of the four $1 \times 2020$ faces of each beam touch either a face of the cube or the interior of the face of another beam.

What is the smallest positive number of beams that can be placed to satisfy these conditions?


Solution

Problem 3

Let $p$ be an odd prime. An integer $x$ is called a quadratic non-residue if $p$ does not divide $x - t^2$ for any integer $t$.

Denote by $A$ the set of all integers $a$ such that $1 \le a < p$, and both $a$ and $4 - a$ are quadratic non-residues. Calculate the remainder when the product of the elements of $A$ is divided by $p$.

Solution

Day 2