2020 AIME I Problems/Problem 13
Problem
Point lies on side of so that bisects The perpendicular bisector of intersects the bisectors of and in points and respectively. Given that and the area of can be written as where and are relatively prime positive integers, and is a positive integer not divisible by the square of any prime. Find
Solution
Points are defined as shown. It is pretty easy to show that by spiral similarity at by some short angle chasing. Now, note that is the altitude of , as the altitude of . We need to compare these altitudes in order to compare their areas. Note that Stewart's theorem implies that , the altitude of . Similarly, the altitude of is the altitude of , or . However, it's not too hard to see that , and therefore . From here, we get that the area of is , by similarity. ~awang11
See Also
2020 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.