2000 AMC 12 Problems/Problem 1

In the year $2001$, the United States will host the International Mathematical Olympiad. Let $\displaystyle I,M,$ and $\displaystyle O$ be distinct positive integers such that the product $I \cdot M \cdot O = 2001$. What is the largest possible value of the sum $\displaystyle I + M + O$?

$\mathrm{(A) \ 23 } \qquad \mathrm{(B) \ 55 } \qquad \mathrm{(C) \ 99 } \qquad \mathrm{(D) \ 111 } \qquad \mathrm{(E) \ 671 }$


Solution

The sum is the highest if two factors are the lowest! So, $1 \cdot 3 \cdot 667 = 2001$ and $1+3+667=671 \Longrightarrow \mathrm{(E)}$.

See Also