2020 AMC 10B Problems/Problem 8
Problem
Points and
lie in a plane with
. How many locations for point
in this plane are there such that the triangle with vertices
,
, and
is a right triangle with area
square units?
Solution
There are options here:
1. is the right angle.
It's clear that there are points that fit this, one that's directly to the right of
and one that's directly to the left. We don't need to find the length, we just need to know that it is possible, which it is.
2. is the right angle.
Using the exact same reasoning, there are also solutions for this one.
3. The new point is the right angle.
The diagram looks something like this. We know that the altitude to base must be
since the area is
. From here, we must see if there are valid triangles that satisfy the necessary requirements.
First of all, because of the area.
Next, from the Pythagorean Theorem.
From here, we must look to see if there are valid solutions. There are multiple ways to do this:
We know that the minimum value of is when
. In this case, the equation becomes
, which is LESS than
.
Another possibility is if . The equation becomes
, which is obviously greater than
. We can conclude that there are values for
and
in between that satisfy the Pythagorean Theorem.
And since , the triangle is not isoceles, meaning we could reflect it over
and/or the line perpendicular to
for a total of
triangles this case.
~quacker88
Solution 2
Note that line segment can either be the shorter leg, longer leg or the hypotenuse. If it is the shorter leg, there are two possible points for
that can satisfy the requirements - that being above or below
. As such, there are
ways for this case. Similarly, one can find that there are also
ways for point
to lie if
is the longer leg. If it is a hypotenuse, then there are
possible points because the arrangement of the shorter and longer legs can be switched, and can be either above or below the line segment. Therefore, the answer is
.
Video Solution
~IceMatrix
See Also
2020 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.