1965 AHSME Problems/Problem 34

Revision as of 13:55, 29 January 2020 by Dividend (talk | contribs) (Created page with "== Problem 34== For <math>x \ge 0</math> the smallest value of <math>\frac {4x^2 + 8x + 13}{6(1 + x)}</math> is: <math>\textbf{(A)}\ 1 \qquad \textbf{(B) }\ 2 \qquad \tex...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem 34

For $x \ge 0$ the smallest value of $\frac {4x^2 + 8x + 13}{6(1 + x)}$ is:

$\textbf{(A)}\ 1 \qquad  \textbf{(B) }\ 2 \qquad  \textbf{(C) }\ \frac {25}{12} \qquad  \textbf{(D) }\ \frac{13}{6}\qquad \textbf{(E) }\ \frac{34}{5}$

Solution

To begin, lets denote the equation, $\frac {4x^2 + 8x + 13}{6(1 + x)}$ as $f(x)$. Let's notice that:

\begin{align*} f(x) & = \frac {4x^2 + 8x + 13}{6(1 + x)}\\\\ 	 & = \frac{4(x^2+2x) + 13}{6(x+1)}\\\\      & = \frac{4(x^2+2x+1-1)+13}{6(x+1)}\\\\      & = \frac{4(x+1)^2+9}{6(x+1)}\\\\      & = \frac{4(x+1)^2}{6(x+1)} + \frac{9}{6(1+x)}\\\\      & = \frac{2(x+1)}{3} + \frac{3}{2(x+1)}\\\\ \end{align*}

After this simplification, we may notice that we may use calculus, or the AM-GM inequality to finish this problem because $x\ge 0$, which implies that both $\frac{2(x+1)}{3} \text{ and } \frac{3}{2(x+1)}$ are greater than zero. Continuing with AM-GM:

\begin{align*} \frac{\frac{2(x+1)}{3} + \frac{3}{2(x+1)}}{2} &\ge {\small \sqrt{\frac{2(x+1)}{3}\cdot \frac{3}{2(x+1)}}}\\\\ f(x) &\ge 2 \end{align*}

Therefore, $f(x) = \frac {4x^2 + 8x + 13}{6(1 + x)} \ge \boxed{\textbf{(B) }2}$


$(\text{With equality when } \frac{2(x+1)}{3} = \frac{3}{2(x+1)}, \text{ or } x=\frac{1}{2})$