2009 AMC 12B Problems/Problem 23

Revision as of 07:22, 4 January 2020 by Lll2019 (talk | contribs)

Problem

A region $S$ in the complex plane is defined by \[S = \{x + iy: - 1\le x\le1, - 1\le y\le1\}.\] A complex number $z = x + iy$ is chosen uniformly at random from $S$. What is the probability that $\left(\frac34 + \frac34i\right)z$ is also in $S$?

$\textbf{(A)}\ \frac12\qquad \textbf{(B)}\ \frac23\qquad \textbf{(C)}\ \frac34\qquad \textbf{(D)}\ \frac79\qquad \textbf{(E)}\ \frac78$

Solution

First, turn $\frac34 + \frac34i$ into polar form as $\frac{3\sqrt{2}}{4}e^{\frac{\pi}{4}i}$. Restated using geometric probabilities, we are trying to find the portion of a square enlarged by a factor of $\frac{3\sqrt{2}}{4}$ and rotated $45$ degrees that lies within the original square. This skips all the absolute values required before. Finish with the symmetry method stated above.

-asdf334

See Also

2009 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 22
Followed by
Problem 24
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png