2011 AMC 10B Problems/Problem 14

Revision as of 19:13, 29 December 2019 by Jerry122805 (talk | contribs) (Solution)

Problem

A rectangular parking lot has a diagonal of $25$ meters and an area of $168$ square meters. In meters, what is the perimeter of the parking lot?

$\textbf{(A)}\ 52 \qquad\textbf{(B)}\ 58 \qquad\textbf{(C)}\ 62 \qquad\textbf{(D)}\ 68 \qquad\textbf{(E)}\ 70$

Solution

Let the sides of the rectangular parking lot be $a$ and $b$. Then $a^2 + b^2 = 625$ and $ab = 168$. Add the two equations together, then factor. \begin{align*} a^2 + 2ab + b^2 &= 625 + 168 \times 2\\ (a + b)^2 &= 961\\ a + b &= 31 \end{align*} The perimeter of a rectangle is $2 (a + b) = 2 (31) = \boxed{\textbf{(C)} 62}$

Solution 2 (Quick)

We see the answer choices or the perimeter are integers. Therefore, the sides of the rectangle are most likely integers that satisfy $a^2+b^2=25^2$. In other words, $(a,b,25)$ is a set of Pythagorean triples. Guess and checking, we have $(7,24,25)$ as the triplet, as the area is $7 \cdot 24 = 168$ as requested. Therefore, the perimeter is $2(7+24)=\boxed{\textbf{(C}} 62}$ (Error compiling LaTeX. Unknown error_msg)

See Also

2011 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png