Conjugate Root Theorem
Theorem
The Conjugate Root Theorem states that if is a polynomial with real coefficients, and
is a root of the equation
, where
, then
is also a root.
A similar theorem states that if
is a polynomial with rational coefficients and
is a root of the polynomial, then
is also a root.
Proof
Suppose that . Then
. However, we know that
, where we define
to be the polynomial with the coefficients replaced with their complex conjugates; we know that
by the assumption that
has real coefficients. Thusly, we show that
, and we are done.
Uses
This has many uses. If you get a fourth degree polynomial, and you are given that a number in the form of is a root, then you know that
in the root. Using the Factor Theorem, you know that
is also a root. Thus, you can multiply that out, and divide it by the original polynomial, to get a depressed quadratic equation. Of course, it doesn't have to be a fourth degree polynomial. It could just simplify it a bit.
This article is a stub. Help us out by expanding it.