2018 AMC 8 Problems/Problem 22
Problem 22
Point is the midpoint of side
in square
and
meets diagonal
at
The area of quadrilateral
is
What is the area of
Solution 1
Let the area of be
. Thus, the area of triangle
is
and the area of the square is
.
By AA similarity, with a 1:2 ratio, so the area of triangle
is
. Now consider trapezoid
. Its area is
, which is three-fourths the area of the square. We set up an equation in
:
Solving, we get
. The area of square
is
.
Solution 2
We can use analytic geometry for this problem.
Let us start by giving the coordinate
,
the coordinate
, and so forth.
and
can be represented by the equations
and
, respectively. Solving for their intersection gives point
coordinates
.
Now, ’s area is simply
or
. This means that pentagon
’s area is
of the entire square, and it follows that quadrilateral
’s area is
of the square.
The area of the square is then .
Solution 3
Note that triangle has half the area of the square and triangle
has
th. Thus the area of the quadrilateral is
th the area of the square. The area of the square is then
.
See Also
2018 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 21 |
Followed by Problem 23 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
Set s to be the bottom left triangle.
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.