2014 AMC 8 Problems/Problem 22

Revision as of 19:01, 6 October 2019 by Elmoomle (talk | contribs) (Solution)

Problem

A $2$-digit number is such that the product of the digits plus the sum of the digits is equal to the number. What is the units digit of the number?

$\textbf{(A) }1\qquad\textbf{(B) }3\qquad\textbf{(C) }5\qquad\textbf{(D) }7\qquad \textbf{(E) }9$

Solution

We can think of the number as $10a+b$, where a and b are digits. Since the number is equal to the product of the digits ($a\cdot b$) plus the sum of the digits ($a+b$), we can say that $10a+b=a\cdot b+a+b$. We can simplify this to $10a=a\cdot b+a$, and factor to $(10)a=(b+1)a$. Dividing by $a$, we have that $b+1=10$. Therefore, the units digit, $b$, is $\boxed{\textbf{(E) }9}$












)

See Also

2014 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png