2015 AMC 10B Problems/Problem 19
Contents
Problem
In , and . Squares and are constructed outside of the triangle. The points , and lie on a circle. What is the perimeter of the triangle?
Solution 1
The center of the circle lies on the perpendicular bisectors of both chords and . Therefore we know the center of the circle must also be the midpoint of the hypotenuse. Let this point be . Draw perpendiculars to and from , and connect and . . Let and . Then . Simplifying this gives . But by Pythagorean Theorem on , we know , because . Thus . So our equation simplifies further to . However , so , which means , or . Aha! This means is just an isosceles right triangle, so , and thus the perimeter is .
Solution 2
draw((3.46,0.96)--(3.44,-3.36)--(8.02,-3.44)--cycle); draw((3.46,0.96)--(8.02,-3.44)--(12.42,1.12)--(7.86,5.52)--cycle);
/* draw figures */
draw((3.46,0.96)--(3.44,-3.36)); draw((3.44,-3.36)--(8.02,-3.44)); draw((8.02,-3.44)--(3.46,0.96)); draw((3.46,0.96)--(-0.86,0.98)); draw((-0.86,0.98)--(-0.88,-3.34)); draw((-0.88,-3.34)--(3.44,-3.36)); draw((3.46,0.96)--(8.02,-3.44)); draw((8.02,-3.44)--(12.42,1.12)); draw((12.42,1.12)--(7.86,5.52)); draw((7.86,5.52)--(3.46,0.96)); draw((5.74,-1.24)--(-0.86,0.98)); draw((5.74,-1.24)--(-0.87,-1.18), linetype("4 4")); draw((5.74,-1.24)--(7.86,5.52)); draw((5.74,-1.24)--(10.14,3.32), linetype("4 4")); draw(shift((5.82,-1.21))*xscale(6.99920709795045)*yscale(6.99920709795045)*arc((0,0),1,19.44457562540183,197.63600413408128), linetype("2 2"));
/* dots and labels */
dot((3.46,0.96),dotstyle); label("", (3.2,1.06), NE * labelscalefactor); dot((3.44,-3.36),dotstyle); label("", (3.14,-3.86), NE * labelscalefactor); dot((8.02,-3.44),dotstyle); label("", (8.06,-3.8), NE * labelscalefactor); dot((-0.86,0.98),dotstyle); label("", (-1.34,1.12), NE * labelscalefactor); dot((-0.88,-3.34),dotstyle); label("", (-1.48,-3.54), NE * labelscalefactor); dot((12.42,1.12),dotstyle); label("", (12.5,1.24), NE * labelscalefactor); dot((7.86,5.52),dotstyle); label("", (7.94,5.64), NE * labelscalefactor); dot((5.74,-1.24),dotstyle); label("", (5.52,-1.82), NE * labelscalefactor); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); </asy>
See Also
2015 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.